Repozytorium PJATK

COVID-19 predictions with Gradient Boosting Machine

Repozytorium Centrum Otwartej Nauki

Pokaż uproszczony rekord

dc.contributor.author Kravchenko, Ihor
dc.date.accessioned 2023-02-21T13:16:30Z
dc.date.available 2023-02-21T13:16:30Z
dc.date.issued 2023-02-21
dc.identifier.issn 2022/I/D/2
dc.identifier.uri https://repin.pjwstk.edu.pl/xmlui/handle/186319/2514
dc.description.abstract In this paper I have attempted to compare an efficiency and effectiveness of an Ensemble learning techniques, based on binary classification of SARS-CoV-2 disease. Boosting method and its applications will be the core of this thesis. I will compare various Gradient Boosting derivatives; represent their features, benefits and drawbacks. Also I will compare them with Neural Network. I have carry out my results and trained each model constructed on more than 3 millions COVID-19 test cases, over 300k of which had committed positive result. My results had illustrated the convenience and weight of Boosting methods within the framework of binary classification on categorical data, which means that attributes (variables) can take one of the limited number of possible values. Due to simplicity and productivity these methods these methods can be used in practice to recognize potential COVID cases and the symptoms that are influencing the decision of the model. pl_PL
dc.language.iso en pl_PL
dc.relation.ispartofseries ;Nr 6478
dc.subject Informatyka pl_PL
dc.subject Systemy inteligentne pl_PL
dc.title COVID-19 predictions with Gradient Boosting Machine pl_PL
dc.title.alternative Prognozowanie COVID-19 za pomocą algorytmów wzmocnienia gradientowego pl_PL
dc.type Thesis pl_PL


Pliki tej pozycji

Plik Rozmiar Format Przeglądanie

Nie ma plików powiązanych z tą pozycją.

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Szukaj


Szukanie zaawansowane

Przeglądaj

Moje konto