Repozytorium PJATK

Analysis and implementation of an application for analysis of paintings Pinoteka

Repozytorium Centrum Otwartej Nauki

Pokaż uproszczony rekord

dc.contributor.author Ozgur, Aysenur
dc.contributor.author Baimuratova, Aliia
dc.contributor.author Kus, Fatma
dc.date.accessioned 2023-01-24T07:56:41Z
dc.date.available 2023-01-24T07:56:41Z
dc.date.issued 2023-01-24
dc.identifier.issn 2022/I/ABD/52
dc.identifier.uri https://repin.pjwstk.edu.pl/xmlui/handle/186319/2271
dc.description.abstract Pinoteka is an agile solution that allows the user to access demanding arts through built-in innovative technologies. The program is a dynamic web application created based on a client-server model. On the client side, it is supported by React.js a JavaScript library and on the server side, it is utilized with Python programming language and Django web framework with a database supported by Azure SQL Service and Database with Azure Blob Storage. It uses deep learning-based image processing algorithms to match the given image input with the existing image. Each match will provide information about that given image. Our strategy for handling this process is via image models stored in the cloud and vectors kept in databases. It will not only improve accuracy but also help with the agility of our program. The paper contains a detailed description of image recognition and comparison methods. It compares the research of the topic and the web application containing image features comparison experiment. It explains the necessary topics to cover in advance and the comparison of them. Demonstrates non-technical individuals’ image comparison concepts and exposes to artificial intelligence. Furthermore, contains the description of the approaches and the usage of the tools and methods. pl_PL
dc.language.iso en pl_PL
dc.relation.ispartofseries ;Nr 7192
dc.subject image processing pl_PL
dc.subject Deep Learning pl_PL
dc.subject Web Application pl_PL
dc.subject Cloud Solutions pl_PL
dc.subject Feature Extraction pl_PL
dc.subject Neural Network pl_PL
dc.subject Globally Unique Identifier pl_PL
dc.subject Python pl_PL
dc.subject SQL pl_PL
dc.subject Blob storage pl_PL
dc.subject data management system pl_PL
dc.subject paintings pl_PL
dc.subject image matching pl_PL
dc.subject Web framework pl_PL
dc.subject data modelling pl_PL
dc.subject React. pl_PL
dc.title Analysis and implementation of an application for analysis of paintings Pinoteka pl_PL
dc.title.alternative Analiza i implementacja aplikacji do analizy stylów malarskich Pinoteka pl_PL
dc.type Thesis pl_PL


Pliki tej pozycji

Plik Rozmiar Format Przeglądanie

Nie ma plików powiązanych z tą pozycją.

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Szukaj


Szukanie zaawansowane

Przeglądaj

Moje konto