
End-User Software Development:
Tool Support for Mobile Data
Collections

Mathias Kühn, Peter Forbrig,
Anke Dittmar
University of Rostock
Albert-Einstein-Straße 22
Rostock, D-18051 Germany
{mathias.kuehn, peter.forbrig,
anke.dittmar}@uni-rostock.de

Paper presented at MIDI 2013 Conference, 24-25.06.2013, 
Warsaw, Poland.

Abstract
Creating mobile applications is a process of device specific
programming. In this way new devices ask for new
solutions. Additionally, experts with programming skills
are necessary. There is an urgent need for more efficient
approaches. Abstract specifications for domain-specific
areas in combination with tool support for end-user
development seem to be a solution. This paper presents
an approach that is grounded on model-based techniques
and is focused on the domain of data collection. The
language UsiXML and corresponding platform-dependent
interpreters for this language allow to run specifications
on different devices. A set of tools will be introduced that
supports the creation of model-based user interface
specifications. Additionally, the distribution to different
devices is supported. In combination all these tools enable
end-users to create applications in their domain of data
collection.

Author Keywords
End-User Programming; Design Support; Mobile Devices.

ACM Classification Keywords
H.5.m. [Inf. Interf. and Pres. (e.g. HCI)]: Miscellaneous.

General Terms
Human Factors; Design; Measurement.



Introduction
The importance of mobile devices is greater in these days
than ever before. Well-equipped devices allow the
capturing of photos and videos in nearly all situations.
Additionally, almost everyone has nowadays mobile devices
like smartphones available. These devices could be used
more extensively for data collection than it is done at the
moment. A teacher could for instance ask students to
collect weather data three times a day. The advantages
are obvious. The data are available very soon. Measured
data can be combined with pictures of clouds and even
sound could be captured.

Figure 1: A sketch of a Weather
Data Sheet

Manufacturers are very interested in acceptance of their
products. Sometimes they distribute questionnaires on
paper and ask customers for feedback. However, this runs
into problems that the Experience Sampling Method [4]
tries to avoid. Either feedback is not provided or the most
important information is meanwhile lost. Providing
questionnaires on mobile devices would help a lot to get
the needed information. In most cases users are willing to
provide feedback immediately. However, they are too lazy
to provide it later. Immediate feedback has also the
advantage that it is more realistic. Users give this
feedback at the moment in the place where they are while
using the product. Indeed, the need for a software to
support the creation of data collections becomes apparent.

However, because of simplicity we will use within this
paper the example of weather observation as motivation.

Weather Observation
A good knowledge about local and global weather helps
to understand the climatic shift and hopefully avoids
future impact. This example demonstrates in a simple way
the type of application our tools are intended to support.

Students in Europe sometimes learn the consequences of
the four seasons by gathering information about weather
and other environmental influences. They document the
daily weather attributes, like wind direction, wind speed,
rain, snow depth, etc. in a log. Figure 1 contains a sketch
of a weather data sheet that we found in the internet 1

and that is used at schools for manually collecting data.
The students are asked to fill out the data sheet in a daily
interval. When evaluating all data the students see
changes in time which are typical for the season like the
temperature or air pressure.

Another example of weather observation can be found in
forecast. A meteorologist logs specific weather data to
enhance climate models. This helps to make forecast
more precise. The classical way could be that the
meteorologist takes a pad of paper to make notes at the
measurement station. The use of data collection forms in
connection with resistant mobile devices would support
the data collection process much better than the
paper-based approach. It can provide a lot of data in a
relatively short period of time.

Related work
In the domain of mobile data collection there is already a
set of tools available that helps to make solutions for this
kind of application. The following section presents some
approaches that focus on the creation of mobile
applications.

The first example is the App Inventor [1] which is
especially designed for Android devices. This tool can be
used via browsers and allows the design of graphical user
interfaces (GUIs) and their behavior. The GUI design can
be made in a WYSIWYG editor.

1http://www.scholastic.com/weather

http://www.scholastic.com/weather


Figure 2: A screenshot of the App Inventor

Figure 2 shows a screenshot of the App Inventor
containing some widgets on the left hand side. The
behavior of the widgets can be specified via a visual
language in an editor called Block Editor. Programming in
the environment is like doing a puzzle. Syntactic elements
of the language are pieces. The syntax matches when
pieces fit.

Figure 3: A screenshot of the Block Editor

Figure 3 gives an impression how this looks like. The
Block Editor contains a conditional statement that is
executed when the back button is pressed. The tool
provides a very interesting approach. However, it can only
be applied by end-users that are able to specify algorithms
on a very detailed level. Programming skills are necessary.
This cannot be considered as fulfilled for most domain
experts.

Another example is MobiDev [6] which is also designed for
Android devices. This tool allows the creation of
applications directly on the mobile device. The GUI design
can be made by sketching with predefined elements. A
sketch forces to use a special visual specification language.
The final GUI is generated via a captured image of the
sketch. This can be done with the camera of the device.
Unfortunately, the behavior has to be specified in the
classical way by programming on the device. This task is
still very challenging for end-users.

MicroApp [3] is another approach using a visual language
that facilitates the creation of applications on the mobile
device. The idea is to compose sequential or parallel
actions of a predefined set of actions to fulfill a task.
Later the GUI is automatically generated from the
specified task model. The behavior is specified in concrete
action objects. At runtime the presentation is a sequence
of slides containing interfaces of the underlying action
objects. This modeling approach seems to be still
challenging for end-users.

For the use of model-based specifications with graphical
user interfaces there are several approaches available. One
example is the USer Interface eXtensible Markup
Language UsiXML [2, 5]. This language supports different
levels of abstraction, like task models and abstract user
interface specifications. One principle of UsiXML is to be



completely independent of concrete input and output
devices. User interface instances are generated by
task-based models via abstract and concrete to final user
interface specification.

Own approach
The following section presents our tools that offer the
opportunity to create applications for data collections.
The corresponding editor for forms, a web application for
exchanging specifications and data as well as the usage of
forms on mobile devices will be discussed within this
paragraph.

The editor for forms focusses on building screens
containing sequences of elements. Specific elements can
be selected from a predefined set of types of input, output
and question elements. Output elements are of type text,
image, audio or video. Input elements have additionally
the types date and choice. Question elements can be of
type open-end, yes-no, multi-choice or rating-scale.

In our approach output is interpreted as part of the user
interface where the user will not be able to manipulate
data. Input in contrast is interpreted as part of the user
interface where the user will be able to manipulate data.
In general question elements are interpreted like input
elements, but are bound to a specific context of a
question.

Screens can be grouped. All screens of all groups build a
system. A system will be interpreted as sequence of
screens containing sequences of widgets on the mobile
device. In this way widgets of the system represent the
elements povided by the editor for forms. Systems with
screens containing only question elements can be
considered as questionnaires. Figure 4 shows a screenshot
of the editor.

Figure 4: A screenshot of the editor for forms containing the
Weather Data Sheet

On the left hand side is the predefined set of elements. In
the middle of the figure there are sketches of the screens.
On the right hand side there is a breadcrumb, a table and
a tree.

The breadcrumb shows the path of the current selected
screen (“Weather Data Sheet”) as part of the tree
structure which represents the system. The table shows
attributes of the selected screen and allows manipulations
of them. The tree represents the structure of the specified
system.

UsiXML Specification
We already mentioned that the USer Interface eXtensible
Markup Language [2, 5] allows model-based definitions of
graphical user interfaces. The definition of GUIs is
platform independent what is nice in the context of
desktop, mobile or web applications. Our editor is able to
transform the designed system to a subset of UsiXML. We
implemented several interpreters for this UsiXML-subsets.
Using these interpreters, systems can run on a mobile
device, in a browser or in the editor for forms.



One advantage of this domain-specific model-based
technique is the platform independence we got.
Nevertheless, this specifications are specific enough to
reach a certain amount of devices with graphical user
interface output. The abstract specifications of user
interfaces can be instantiated in a platform dependent
manner. According to this our tools need to follow some
specific mapping rules for the abstraction as well as
instantiation of GUIs.

To specify user interfaces we concentrated on the concrete
user interface (CUI) model of UsiXML which is part of a
set of different models. Some more of these models are
task model, abstract user interface model, domain model
or mapping model. A screen of our editor is mapped to a
window-element of the CUI model. Elements of the screen
also are mapped to elements of UsiXML according to their
meaning, e.g. text to textfield-element or video to
videofield-element of the CUI model. The hierarchy of a
system is also reflected in the CUI model. The elements
of the user interfaces are the leafs of the editor-tree
representation as well as of the CUI model specification.
Their parents are the screens of the editor as well as the
parents of the CUI model tree specification which are the
window-elements, respectively.

Figure 5: The UsiXML specification of the Weather Data
Sheet

Figure 5 shows the UsiXML specification of the example
“Weather Data Sheet” in Figure 4. The UsiXML
specification is equal to the tree representation of the
editor.

Web Application
We developed a web application to make the UsiXML
specification available on different devices via world wide
web. This application provides a browser interface as well
as web service interface. The file containing the UsiXML
specification needs to be uploaded to a server after it was
created. The browser interface provides options to up-
and download as well as to view files in browser specific
presentations.

After the upload has finished the file is available for
selection. A selected file will later be distributed via the
web service interface. On request, a file containing the
UsiXML specification can be downloaded to a mobile
device. It is available for further interpretation there.

Mobile Application
To make use of UsiXML specifications we developed an
interpreter for mobile devices with Android platform. This
tool completely supports specifications created with our
editor. The interpreter uses the web service interface of
the web application to get the UsiXML specification file
which is currently selected on the server.

Until now interpreted screens have a simple behavior.
Users can navigate between elements of a screen by
scrolling and between screens by clicking back or next
button. The accessibility of these buttons can be specified
both for all screens as well as for individual screens in our
editor.

When the user has finished inserting all needed



information of a system the file containing the UsiXML
specification together with the user data are send back
again to the server via the web service interface. After
that the uploaded file is available for download or for
review in the browser interface. In Figure 6 is a screenshot
of the interpreted screen of the example “Weather Data
Sheet”.

Figure 6: A screenshot of the
interpreted screen “Weather
Data Sheet”

Discussion
An advantage of our approach is to use media like image,
audio and video as part of the specification. In comparison
to web based data collection applications the device
features like microphone and camera are directly used in
the mobile application. Captured data is not separated by
different files. This kind of data could be part of the
distributed specification as well as the submitted one.
However, the model-based approach of this concept
dissociates from device-specific user interfaces.

Conclusion and further work
We presented an approach that enable end-users to create
specific applications for mobile devices in the domain of
data collection.

An editor for forms allows the creation of UsiXML
specifications from interactively designed graphical user
interfaces. A web application facilitates the distribution of
specifications via web service technique. This tool also
offers the opportunity to view specifications via browser
interfaces. The UsiXML interpreter for Android platform
supports the instantiation of specifications created with
the described editor and distributed via web application.

At the moment the specification of the dynamic behavior
of applications like sending one picture every day or
showing screens depending on entered values is limited.

Further research will show what kind of support users
would like to have and which representation of such
specification is usable. The statistical analysis of collected
data is not focus of the tools and will be part of
investigation for further work.

Acknowledgments
We thank Richard Becker for the ideas of his inquiry tool
that helped us to form a concept for a mobile data
collection application.

References
[1] MIT App Inventor. http://appinventor.mit.edu/.
[2] UsiXML. http://www.usixml.org/.
[3] Cuccurullo, S., Francese, R., Risi, M., and Tortora, G.

MicroApps Development on Mobile Phones. In
International Symposium on End-User Development
(IS-EUD), Springer, Heidelberg (2011), 289–294.

[4] Kubey, R., Larson, R., and Csikszentmihalyi, M.
Experience Sampling Method. Journal of
Communication 46, 2 (1996), 99–120.

[5] Limbourg, Q., Vanderdonckt, J., Michotte, B.,
Bouillon, L., and Florins, M. USIXML: a User
Interface Description Language Supporting Multiple
Levels of Independence. In Proceedings of the ICWE
2004 First International Workshop on Device
Independent Web Engineering (DIWE 2004), Springer,
Heidelberg (2004), 325–338.

[6] Seifert, J., Pfleging, B., Bahamóndez, E., Hermes, M.,
Rukzio, E., and Schmidt, A. MobiDev: A Tool for
Creating Apps on Mobile Phones. In Proceedings of
the 13th International Conference on Human
Computer Interaction with Mobile Devices and
Services (MobileHCI 2011), ACM, New York (2011),
109–112.

http://appinventor.mit.edu/
http://www.usixml.org/

	Introduction
	Weather Observation

	Related work
	Own approach
	UsiXML Specification
	Web Application
	Mobile Application

	Discussion
	Conclusion and further work
	Acknowledgments
	References

